Sphingomyelin synthase

sphingomyelin synthase
Identifiers
EC no.2.7.8.27
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

In enzymology, a sphingomyelin synthase (EC 2.7.8.27) is an enzyme that catalyzes the chemical reaction

a ceramide + a phosphatidylcholine {\displaystyle \rightleftharpoons } a sphingomyelin + a 1,2-diacyl-sn-glycerol

or the reaction using phosphatidylethanolamine instead of phosphatidylcholine to generate ceramide phosphoethanolamine (CPE), a sphingomyelin analog rich in invertebrates, such as insects.

Thus, the two substrates of this enzyme are ceramide and phosphatidylcholine, whereas its two products are sphingomyelin and 1,2-diacyl-sn-glycerol.

This enzyme belongs to the family of transferases, specifically those transferring non-standard substituted phosphate groups. The systematic name of this enzyme class is ceramide:phosphatidylcholine cholinephosphotransferase. Other names in common use include SM synthase, SMS1, and SMS2. SM synthase family also includes the enzyme catalyzing CPE synthesis, named SMSr (SMS-related).

Structure of SM synthases

The high sequence identities shared among the three members of the Sphingomyelin Synthase (SMS) family have intrigued researchers for years. Recent cryo-electron microscopic studies have unveiled a fascinating hexameric organization specifically for SMSr,[1] while biochemical investigations have highlighted the formation of stable dimers by SMS1 and SMS2.[2] Within this hexameric structure, each monomeric unit of SMSr functions as an independent catalytic entity, characterized by six transmembrane helices.

The structural analysis has revealed the presence of a sizable chamber within the helical bundle of SMSr. This chamber serves as the site for catalytic activity, with researchers pinpointing a catalytic pentad, denoted as E-H/D-H-D, strategically positioned at the interface between the lipophilic and hydrophilic segments of the reaction chamber. Furthermore, the elucidation of SMSr's catalytic mechanism has uncovered an intricate two-step synthesis process for SM synthesis. Initially, phosphoethanolamine (or phosphatidylcholine in case of SMS1/2) is hydrolyzed from phosphatidylethanolamine (PE-PLC hydrolysis), followed by the subsequent transfer of the phosphoethanolamine moiety to ceramide.

References

  1. ^ Hu K, Zhang Q, Chen Y, Yang J, Xia Y, Rao B, et al. (2024). "Cryo-EM structure of human sphingomyelin synthase and its mechanistic implications for sphingomyelin synthesis". Nat Struct Mol Biol: 1–12. doi:10.1038/s41594-024-01237-2.
  2. ^ Hayashi Y, Nemoto-Sasaki Y, Matsumoto N, Tanikawa T, Oka S, Tanaka Y, et al. (January 2017). "Carboxyl-terminal Tail-mediated Homodimerizations of Sphingomyelin Synthases Are Responsible for Efficient Export from the Endoplasmic Reticulum". Journal of Biological Chemistry. 292 (3): 1122–1141. doi:10.1074/jbc.M116.746602. PMC 5247646. PMID 27927984.
  • Ullman MD, Radin NS (1974). "The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver". J. Biol. Chem. 249 (5): 1506–12. doi:10.1016/S0021-9258(19)42911-6. PMID 4817756.
  • Voelker DR, Kennedy EP (1982). "Cellular and enzymic synthesis of sphingomyelin". Biochemistry. 21 (11): 2753–9. doi:10.1021/bi00540a027. PMID 7093220.
  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC (2004). "Identification of a family of animal sphingomyelin synthases". EMBO J. 23 (1): 33–44. doi:10.1038/sj.emboj.7600034. PMC 1271672. PMID 14685263.
  • Tafesse FG, Ternes P, Holthuis JC (2006). "The multigenic sphingomyelin synthase family". J. Biol. Chem. 281 (40): 29421–5. doi:10.1074/jbc.R600021200. PMID 16905542.
  • Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T (2004). "Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells". J. Biol. Chem. 279 (18): 18688–93. doi:10.1074/jbc.M401205200. PMID 14976195.
  • v
  • t
  • e
Transferases: phosphorus-containing groups (EC 2.7)
2.7.1-2.7.4:
phosphotransferase/kinase
(PO4)
2.7.1: OH acceptor
2.7.2: COOH acceptor
2.7.3: N acceptor
2.7.4: PO4 acceptor
2.7.6: diphosphotransferase
(P2O7)2.7.7: nucleotidyltransferase
(PO4-nucleoside)
Polymerase
DNA polymerase
DNA-directed DNA polymerase
I/A
γ
θ
ν
T7
Taq
II/B
α
δ
ε
ζ
Pfu
III/C
IV/X
β
λ
μ
TDT
V/Y
η
ι
κ
RNA-directed DNA polymerase
Reverse transcriptase
Telomerase
RNA polymerase
Phosphorolytic
3' to 5' exoribonuclease
Nucleotidyltransferase
Guanylyltransferase
Other
2.7.8: miscellaneous
Phosphatidyltransferases
Glycosyl-1-phosphotransferase
2.7.10-2.7.13: protein kinase
(PO4; protein acceptor)
2.7.10: protein-tyrosine
2.7.11: protein-serine/threonine
  • see serine/threonine-specific protein kinases
2.7.12: protein-dual-specificity
  • see serine/threonine-specific protein kinases
2.7.13: protein-histidine
Portal:
  • icon Biology


This EC 2.7 enzyme-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e