Mercury telluride

Topologically insulating chemical compound

Mercury telluride
Names
Systematic IUPAC name
Mercury telluride
Other names
Mercuric telluride, mercury(II) telluride
Identifiers
CAS Number
  • 12068-90-5 checkY
3D model (JSmol)
  • Interactive image
ECHA InfoCard 100.031.905 Edit this at Wikidata
EC Number
  • 235-108-9
PubChem CID
  • 82914
CompTox Dashboard (EPA)
  • DTXSID3065245 Edit this at Wikidata
InChI
  • InChI=1S/Hg.Te
  • [Te]=[Hg]
Properties
Chemical formula
HgTe
Molar mass 328.19 g/mol
Appearance near black cubic crystals
Density 8.1 g/cm3
Melting point 670°C
Structure
Crystal structure
Sphalerite, cF8
Space group
F43m, No. 216
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references
Chemical compound

Mercury telluride (HgTe) is a binary chemical compound of mercury and tellurium. It is a semi-metal related to the II-VI group of semiconductor materials. Alternative names are mercuric telluride and mercury(II) telluride.

HgTe occurs in nature as the mineral form coloradoite.

Physical properties

All properties are at standard temperature and pressure unless stated otherwise. The lattice parameter is about 0.646 nm in the cubic crystalline form. The bulk modulus is about 42.1 GPa. The thermal expansion coefficient is about 5.2×10−6/K. Static dielectric constant 20.8, dynamic dielectric constant 15.1. Thermal conductivity is low at 2.7 W·m2/(m·K). HgTe bonds are weak leading to low hardness values. Hardness 2.7×107 kg/m2.[1][2][3]

Doping

N-type doping can be achieved with elements such as boron, aluminium, gallium, or indium. Iodine and iron will also dope n-type. HgTe is naturally p-type due to mercury vacancies. P-type doping is also achieved by introducing zinc, copper, silver, or gold.[1][2]

Topological insulation

Electron micrograph (right) of a HgTe nanowire embedded in a carbon nanotube, combined with an image simulation (left).[4]

Mercury telluride was the first topological insulator discovered, in 2007. Topological insulators cannot support an electric current in the bulk, but electronic states confined to the surface can serve as charge carriers.[5]

Chemistry

HgTe bonds are weak. Their enthalpy of formation, around −32kJ/mol, is less than a third of the value for the related compound cadmium telluride. HgTe is easily etched by acids, such as hydrobromic acid.[1][2]

Growth

Bulk growth is from a mercury and tellurium melt in the presence of a high mercury vapour pressure. HgTe can also be grown epitaxially, for example, by sputtering or by metalorganic vapour phase epitaxy.[1][2]

Nanoparticles of mercury telluride can be obtained via cation exchange from cadmium telluride nanoplatelets.[6]

See also

References

  1. ^ a b c d Brice, J. and Capper, P. (eds.) (1987) Properties of mercury cadmium telluride, EMIS datareview, INSPEC, IEE, London, UK.
  2. ^ a b c d Capper, P. (ed.) (1994) Properties of Narrow-Gap Cadmium-Based Compounds. INSPEC, IEE, London, UK. ISBN 0-85296-880-9
  3. ^ Boctor, N.Z.; Kullerud, G. (1986). "Mercury selenide stoichiometry and phase relations in the mercury-selenium system". Journal of Solid State Chemistry. 62 (2): 177. Bibcode:1986JSSCh..62..177B. doi:10.1016/0022-4596(86)90229-X.
  4. ^ Spencer, Joseph; Nesbitt, John; Trewhitt, Harrison; Kashtiban, Reza; Bell, Gavin; Ivanov, Victor; Faulques, Eric; Smith, David (2014). "Raman Spectroscopy of Optical Transitions and Vibrational Energies of ~1 nm HgTe Extreme Nanowires within Single Walled Carbon Nanotubes" (PDF). ACS Nano. 8 (9): 9044–52. doi:10.1021/nn5023632. PMID 25163005.
  5. ^ König, M; Wiedmann, S; Brüne, C; Roth, A; Buhmann, H; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. (2007). "Quantum Spin Hall Insulator State in HgTe Quantum Wells". Science. 318 (5851): 766–770. arXiv:0710.0582. Bibcode:2007Sci...318..766K. doi:10.1126/science.1148047. PMID 17885096. S2CID 8836690.
  6. ^ Izquierdo, Eva; Robin, Adrien; Keuleyan, Sean; Lequeux, Nicolas; Lhuillier, Emmanuel; Ithurria, Sandrine (2016-08-12). "Strongly Confined HgTe 2D Nanoplatelets as Narrow Near-Infrared Emitters". Journal of the American Chemical Society. 138 (33): 10496–10501. doi:10.1021/jacs.6b04429. ISSN 0002-7863. PMID 27487074.

External links

  • Thermophysical properties database[permanent dead link] at Germany's Chemistry Information Centre, Berlin
  • v
  • t
  • e
Mercury(I)
  • HgH
  • Hg2H2
  • Hg2Br2
  • Hg2Cl2
  • Hg2F2
  • Hg2I2
  • Hg2(NO3)2
  • Hg2O
  • Hg2CO3
  • Hg2SO4
  • Hg2S (hypothetical)
Mercury(II)
  • HgH2
  • HgNH2Cl
  • HgSe
  • HgS
  • HgTe
  • Hg(O2CCH3)2
  • HgBr2
  • HgCl2
  • Hg(CN)2
  • HgF2
  • Hg(OH)2
  • HgI2
  • Hg(NO3)2
  • HgO
  • HgSO4
  • Hg(SCN)2
  • Hg(CNO)2
  • Hg3N2
  • Hg(Si(CH3)3)2
  • K2HgI4
Organomercury
compounds
  • Hg(CH3)2
  • Hg(C2H5)2
  • Hg(C6H5)2
  • HgC6H5CH3CO2
  • HgC6H5OB(OH)2
  • HgC6H5NO3
  • HgC6H5CCl3
  • HgClC6H4CO2H
  • HgOHCH2CHOCH3CH2(NHCO)
  • C
    36
    H
    70
    HgO
    4
  • HgOHCH2CHOCH3CH2NHCOC6H4OCH2CO2H
  • Na2HgOHC6HOBrC6H2OBrOCHC6H4CO2
  • HgOC6H2CH3NO2
  • NaHgC2H5SC6H4CO2
Mercury(IV)
  • HgF4 (hypothetical)
Amalgams
Mercury cations
  • Hg2+
  • Hg22+
  • Hg32+
  • Hg42+
  • Hg34+
  • HgCH3+
  • HgC2H5+
  • HgC6H5+
  • v
  • t
  • e
Salts and covalent derivatives of the telluride ion
H2Te He
Li2Te BeTe B CTe2
(CH3)2Te
(NH4)2Te O F Ne
Na2Te MgTe Al2Te Si P0.8Te0.2 S Cl Ar
K2Te CaTe Sc2Te3 Ti VTe2 CrTe
Cr2Te3
MnTe
MnTe2
FeTe CoTe NiTe Cu2Te
CuTe
CuTe2
ZnTe GaTe
Ga2Te3
-Ga
GeTe
-Ge
As2Te3
As4Te3
+As
Se +Br Kr
Rb2Te SrTe Y2Te3 ZrTe5 NbTe2 MoTe2 Tc Ru Rh Pd Ag2Te CdTe In2Te3 SnTe
SnTe2
Sb2Te3 Te2-
Te2-
n
I Xe
Cs2Te BaTe * LuTe
Lu2Te3
HfTe5 TaTe2 WTe2
WTe3
ReTe2 Os Ir Pt AuxTey HgTe Tl2Te PbTe Bi2Te3 Po At Rn
Fr RaTe ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaTe
La2Te3
CeTe
Ce2Te3
PrTe
Pr2Te3
NdTe
Nd2Te3
Pm SmTe
Sm2Te3
EuTe
Eu2Te3
GdTe
Gd2Te3
TbTe
Tb2Te3
DyTe
Dy2Te3
HoTe
Ho2Te3
ErTe
Er2Te3
TmTe
Tm2Te3
YbTe
Yb2Te3
** Ac ThTe2 Pa UTe2 Np Pu Am Cm Bk Cf Es Fm Md No