Glyceraldehyde 3-phosphate

Glyceraldehyde 3-phosphate
Names
IUPAC name
2-hydroxy-3-oxopropyl dihydrogen phosphate
Identifiers
CAS Number
  • 591-59-3 checkY
3D model (JSmol)
  • Interactive image
Beilstein Reference
1725008
ChEBI
  • CHEBI:17138 checkY
ChEMBL
  • ChEMBL1232918
ChemSpider
  • 709 (Racemic) checkY
  • 393755 (L isomer) checkY
  • 388314 (D isomer) checkY
DrugBank
  • DB02263
ECHA InfoCard 100.008.839 Edit this at Wikidata
EC Number
  • 209-721-7
KEGG
  • C00661 checkY
  • C00118 checkY
MeSH Glyceraldehyde+3-Phosphate
PubChem CID
  • 729
UNII
  • 7466PL1110 checkY
CompTox Dashboard (EPA)
  • DTXSID40861814 Edit this at Wikidata
InChI
  • InChI=1S/C3H7O6P/c4-1-3(5)2-9-10(6,7)8/h1,3,5H,2H2,(H2,6,7,8) checkY
    Key: LXJXRIRHZLFYRP-UHFFFAOYSA-N checkY
  • InChI=1/C3H7O6P/c4-1-3(5)2-9-10(6,7)8/h1,3,5H,2H2,(H2,6,7,8)
    Key: LXJXRIRHZLFYRP-UHFFFAOYAH
  • C([C@H](C=O)O)OP(=O)(O)O
Properties
Chemical formula
C3H7O6P
Molar mass 170.058
Melting point 102–104 °C[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references
Chemical compound

Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms.[2][3] With the chemical formula H(O)CCH(OH)CH2OPO32-, this anion is a monophosphate ester of glyceraldehyde.

An intermediate in both glycolysis and gluconeogenesis

Formation

D-glyceraldehyde 3-phosphate is formed from the following three compounds in reversible reactions:

β-D-fructose 1,6-bisphosphate fructose-bisphosphate aldolase D-glyceraldehyde 3-phosphate dihydroxyacetone phosphate
+
fructose-bisphosphate aldolase

Compound C05378 at KEGG Pathway Database. Enzyme 4.1.2.13 at KEGG Pathway Database. Compound C00111 at KEGG Pathway Database. Compound C00118 at KEGG Pathway Database.

The numbering of the carbon atoms indicates the fate of the carbons according to their position in fructose 6-phosphate.

Dihydroxyacetone phosphate triose phosphate isomerase D-glyceraldehyde 3-phosphate
 
 
  triose phosphate isomerase

Compound C00111 at KEGG Pathway Database.Enzyme 5.3.1.1 at KEGG Pathway Database.Compound C00118 at KEGG Pathway Database.

As a substrate

glyceraldehyde 3-phosphate glyceraldehyde phosphate dehydrogenase D-glycerate 1,3-bisphosphate
 
NAD+ + Pi NADH + H+
NAD+ + Pi NADH + H+
 
 

Compound C00118 at KEGG Pathway Database. Enzyme 1.2.1.12 at KEGG Pathway Database. Reaction R01063 at KEGG Pathway Database. Compound C00236 at KEGG Pathway Database.

D-glyceraldehyde 3-phosphate is also of some importance since this is how glycerol (as DHAP) enters the glycolytic and gluconeogenic pathways. Furthermore, it is a participant in and a product of the pentose phosphate pathway.

Interactive pathway map

|Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

[[File:
GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article
|alt=Glycolysis and Gluconeogenesis edit]]
Glycolysis and Gluconeogenesis edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".

An intermediate in photosynthesis

During plant photosynthesis, 2 equivalents of glycerate 3-phosphate (GP; also known as 3-phosphoglycerate) are produced by the first step of the light-independent reactions when ribulose 1,5-bisphosphate (RuBP) and carbon dioxide are catalysed by the rubisco enzyme. The GP is converted to D-glyceraldehyde 3-phosphate (G3P) using the energy in ATP and the reducing power of NADPH as part of the Calvin cycle. This returns ADP, phosphate ions Pi, and NADP+ to the light-dependent reactions of photosynthesis for their continued function. RuBP is regenerated for the Calvin cycle to continue.

G3P is generally considered the prime end-product of photosynthesis and it can be used as an immediate food nutrient, combined and rearranged to form monosaccharide sugars, such as glucose, which can be transported to other cells, or packaged for storage as insoluble polysaccharides such as starch.

Balance sheet

6 CO2 + 6 RuBP (+ energy from 12 ATP and 12 NADPH) →12 G3P (3-carbon)

10 G3P (+ energy from 6 ATP) → 6 RuBP (i.e. starting material regenerated)

2 G3Pglucose (6-carbon).

In tryptophan biosynthesis

Glyceraldehyde 3-phosphate occurs as a byproduct in the biosynthesis pathway of tryptophan, an essential amino acid that cannot be produced by the human body.

In thiamine biosynthesis

Glyceraldehyde 3-phosphate occurs as a reactant in the biosynthesis pathway of thiamine (Vitamin B1), another substance that cannot be produced by the human body.

References

  1. ^ "metabocard for Glycerol 3-phosphate".
  2. ^ Berg, Jeremy M.; Tymoczko, Stryer (2002). Biochemistry (5th ed.). New York: W.H. Freeman and Company. ISBN 0-7167-3051-0.
  3. ^ Nelson, D. L.; Cox, M. M. "Lehninger, Principles of Biochemistry" 3rd Ed. Worth Publishing: New York, 2000. ISBN 1-57259-153-6.

External links

Wikimedia Commons has media related to Glyceraldehyde 3-phosphate.
  • D-Glyceraldehyde 3-phosphate and the reactions and pathways it participates in, from the KEGG PATHWAY Database
  • Glyceraldehyde 3-phosphate and the reactions and pathways it participates in, from the KEGG PATHWAY Database
  • v
  • t
  • e
ATP
ADP
Rightward reaction arrow with minor substrate(s) from top left and minor product(s) to top right

Glucose-6-phosphate
isomerase

Reversible left-right reaction arrow

Fructose-bisphosphate
aldolase

Reversible left-right reaction arrow

+

+

Glyceraldehyde 3-phosphate

Triosephosphate
isomerase

Reversible left-right reaction arrow

2 × Glyceraldehyde 3-phosphate

2 × 

Glyceraldehyde-3-phosphate
dehydrogenase

NAD++ Pi
NADH + H+
Reversible left-right reaction arrow with minor forward substrate(s) from top left, minor forward product(s) to top right, minor reverse substrate(s) from bottom right and minor reverse product(s) to bottom left
NAD++ Pi
NADH + H+
ADP
ATP
Reversible left-right reaction arrow with minor forward substrate(s) from top left, minor forward product(s) to top right, minor reverse substrate(s) from bottom right and minor reverse product(s) to bottom left
ADP
ATP
2 × 
2 × 

Phosphopyruvate
hydratase (enolase)

 
H2O
Reversible left-right reaction arrow with minor forward product(s) to top right and minor reverse substrate(s) from bottom right
 
H2O
2 × 
ADP
ATP
Rightward reaction arrow with minor substrate(s) from top left and minor product(s) to top right

2 × Pyruvate

2 ×